
Computer Science,ý..

AD-A274 125

0, Automatic Mapping of Task and Data Parallel Programs
* * for Efficient Execution on Multicomputers

November 1993

CMU-CS-93-2 12

DTI C
ELECTE
DE~C2 81993

.t b v C rees Mello
i N,

93-31345 9 ~2 8



Best
Avai~lable

Copy



Automatic Mapping of Task and Data Parallel Programs
for Efficient Execution on Multicomputers

Jaspal Subhlok
November 1993
CMU-CS-93-212 DTIC

ELECTE

School of Computer Science .:"
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

For a wide variety of applications, both task and data parallelism must be exploited to achieve the best possible
performance on a muiticomputer. Recent research has underlined the importance of exploiting task and data parallelism
in a single compiler framework, and such a compiler can map a single source program in many different ways
onto a parallel machine. There are several complex tradeoffs between task and data parallelism, depending on the
characteristics of the program to be executed and the performance parameters of the target parallel machine. This
makes it very difficult for a programmer to select a good mapping for a task and data parallel program. In this paper
we isolate and examine specific characteristics of executing programs that determine the performance for different
mappings on a parallel machine, and present an automatic system to obtain good mappings. The process consists of
two steps: First, an instrumented input program is executed a fixed number of times with different mappings, to build
an execution model of the program. Next, the model is analyzed to obtain a good final mapping of the program onto
the processors of the parallel machine. The current implementation is static, feedback driven, although the approach
can be extended to a dynamic system. We demonstrate the system with an example program that is a model for many
applications in the domains of signal processing and image processing.
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1 Introduction

Many applications can be naturally expressed as collections of coarse grain tasks, possibly with data parallelism inside
them. The Fx compiler at Carnegie Mellon is designed to allow the programmer to express and exploit task and
data parallelism, and we have demonstrated the power and value of this approach [ 12]. In this paper, we address the
problem of mapping a task and data parallel program to achieve the best performance.

There are several reasons to support task parallelism, in addition to data parallelism, in a parallelizing compiler.
For many applications, particularly in the areas of digital signal processing and image processing, the problem sizes
are relatively small and fixed, and not enough data parallelism is available to effectively use the large number of
processors of a massively parallel machine. Even when adequate data parallelism is available, a data parallel mapping
may not be the most efficient way to execute a program. A purely data parallel approach forces all computations to
be performed on a fixed set of processors, whose number typically varies from tens to thousands. However, it is the
amount and nature of parallelism and communication, that determine how well a computation scales as the number of
procesqors is increased. A complete application often consists of a series of computations with different computation
and comununication requirements. For best performance, it may be necessary to assign different sets of processors to
different computations, and execute several different computations simultaneously.

Using task and data parallelism together, it is possible to map an application in a variety of ways onto a parallel
machine. Consider an application with three coarse grain, pipelined, data parallel computation stages, with each
execution of a computation stage corresponding to a task. A set of mappings for such an application is shown in
Figure 1. Figure I(a) shows a pure data parallel mapping, where all processors participate in all computation stages.
Figure I(b) shows a pure task parallel mapping, where a subset of processors is dedicated to each computation stage.
It may be possible to have multiple copies of the data parallel mapping executing on different sets of processors, as
shown in Figure 1(c). Finally, a mix of task and data parallelism, with replication is shown in Figure 1(d).
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Figure 1: Combinations of Data and Task parallel mappings
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The fundamental question that we are addressing in this paper is: "Which of the many mappings that are feasible
when data and task parallelism are used together is optimal, and how can this be determined automatically ?"

A key determinant of performance is communication locality within each data parallel stage, but it has to be traded
off against processor usage, memory requirements, and inter-task communication cost. Communication locality can be
improved by executing each task on a small number of processors, but this makes it difficult to load balance and keep all
processors busy, implies a higher memory requirement per processor, and possibly a higher inter-task communication
cost, due to a finer task granularity.

Our solution is to build an execution model of the application using timing information from trial executions, and
analyze it to predict the most efficient mapping. Our current implementation is static and feedback driven, and is
applicable to programs for which sample data sets can capture the general execution behavior. In a dynamic system,
the scope is extended to other programs where recent execution history is a good predictor of future execution behavior.

2 Overview

2.1 Programming and compiling task parallelism

The Fx compiler supports task and data parallelism [ 12). The base language is Fortran 77 augmented with Fortran 90
array syntax, and data layout statements based on Fortran D and High Performance Fortran. Data parallelism is
expressed using array syntax and parallel loops. The main concepts in the Fx compiler are language independent, and
Fortran was chosen for convenience and user acceptance. The current target machine is an iWarp processor array [21.

Task parallelism is expressed in special code regions called parallel sections. The body of a parallel section is
limited to calls to subroutines called task-subroutines, with each execution instance representing a parallel task, and
loops to represent multiple instances. Each task-subroutine call is followed by input and output directives, which
define the interface of the task subroutine to the calling routine, that is, they list the variables in the calling routine that
are accessed and modified in the called task-subroutine. The entries in the input and output lists can be scalars, array
slices, or whole arrays. The task-subroutines may have data parallelism inside them. A parallel section of an example
program is shown in Figure 2.

C$ begin parallel
do i = 1,i10

call src(A,B) MI M2

C$ output: AB
call p1(A) AM

CS ~~~input: A"/ ,

C$ output: A : sre . ....- ..

call p2(B) M2 M2
C$ input: B < ,

C$ output: B
call sink (A ,B) -------------- ------------------------

C$ input: A, B Task depaende graph and Repiation and

enddo *.. maodule Machine Mapping

CS .ed parallel

Figure 2: Compilation of task parallelism

The compiler can map and schedule instances of task-subroutines in any way, as long as sequential execution results
are guaranteed'. During compilation, first the input and output directives are analyzed and a task level data dependence
and communication graph is built. Next, the task-subroutines are grouped into modules. All task-subroutines in the
same module are mapped to the same set of processors. The modules may be replicated to generate multiple modules
instances, with each instance receiving and sending data sets in round robin fashion. Finally a subset of the processor
array is assigned to each module instance.

tAssuming dg input and output parameten ame specified correctly
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Figure 2 shows the application of these steps on a small example program. The task level dependence graph is
built from the program and then partitioned into modules MI and M2. Module M2 is replicated to two instances, and
the program is mapped onto the machine.

2.2 Automatic Mapping

Parallel Machine

Multiple compiled
and instrumented U U m U

Source Parallelizing programs • * * *
Program Compiler

Mapping
Information

Mapping Tool

Figure 3: Automatic Mapping System

The subject of this paper is automation of the mapping process discussed in the previous subsection, which is otherwise
driven by user assertions. The structure of the automatic mapping tool and process is shown in Figure 3. The
programmer provides a source program with data parallel and task parallel constructs, as well as a sample data set.
The mapping tool and the parallelizing compiler generate multiple instrumented versions of the program, which are
then executed on the parallel machine, generating runtime statistics. The mapping tool uses these statistics to build an
internal execution model of the program, and analyzes it to generate the final mapping information. This information
is provided to the parallelizing compiler to generate a final parallel program for execution.

3 Execution model for task and data parallel programs
An Fx parallel program consists of a set of data parallel task-subroutines, that are related by data dependences between

them. Every active task-subroutine is in one of the following states:

I. Waiting for a sender to be ready to send input.

2. Receiving input.

3. Executing.

4. Waiting for a receiver to be ready to receive output.

5. Sending output.

By measuring the time it spends in each of these states, for different mappings, we can determine the fundamental
execution properties of a task-subroutine, which can in turn be used to predict the execution behavior for other
mappings. In this section, we present an execution model for task-subroutines, which consists of parameterized
equations for execution time, memory requirement, and inter-task communication time.
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3.1 Execution time.

The execution time of a task-subroutine on a set of processors is mainly determined by the total amount of computation,
the amount of available parallelism, and the communication cost incurred in exploiting the parallelism. Thus, the
execution time r, of task-subroutine Texecuting on P processors can be expressed as:

r.P = co, + (C."lm + •c *P)

The values of the C, parameter describes the execution time characteristics of a specific task-subroutine. The constant
term C, reflects the time spent on sequential computation in the program, as well as the fixed part of the communication
cost. The second term represents the time spent in parallel computation, which decreases linearly with the number of
processors. The last term represents the part of the communication cost that varies with the number of processors, as
the parallelism in communication increases, but the granularity of communication becomes finer.

3.2 Inter-task communication time

The transfer of data between a pair of task-subroutines is of two different forms. If the two task-subroutines are mapped
on the same set of processors, the data transfer is a potential local redistribution of data. If the task-subroutines are
mapped on different sets of processors, there is movement of data from one processor subarray to another processor
subarray. In both cases, the cost is dependent on the volume of the data to be transferred, and the number of processors
involved. Increasing the number of processors implies a potentially higher degree of parallelism in communication,
but may also increase the associated overhead.

We model the data transfer cost between task-subroutines executing on the same set of P processors (data parallel
style) as:

tdp(P) = + P)

And for a pair of task subroutines executing on P1 and P 2 processors respectively (task parallel style) as:

r,~l p2: + .C p,) + .C

3.3 Memory requirement

The memory requirement of a task-subroutine is an important parameter. In a multicomputer that has nodes with a
fixed amount of uniform storage, the memory requirement determines the set of feasible mappings. In the presence of
a memory hierarchy, the memory requirement plays an important role in determining overall performance.

The memory requirement is closely related to the way a parallelizing compiler allocates and manages memory.
We outline the main memory requirements of a parallel program, and state how they are managed by our compilation
system:

1. Global and system variables: Allocated for the duration of execution.

2. Local variables: Allocated on the stack as execution proceeds.

3. Compiler buffers and variables: Allocated dynamically on the heap as execution proceeds.

Global and system variables are allocated identically for all modules and processors. Local variables are allocated
at run time on the stack as the task-subroutines are executed. Sufficient memory for the communication and other
buffers is allocated on entry to a subroutine, and deallocated on exit. If an array argument is to be redistributed as a
result of a a subroutine call, a compiler variable related to the size of the argument is allocated for the duration of the
execution of the subroutine. If the argument is to be transferred from a task-subroutine that belongs to another module.
such a compiler variable is not needed, since the argument is placed in the appropriate distribution on transfer between
modules.

Consider the memory requirement of a processor that is executing a module M with task-subroutines T1, T2, .. .T..
If the local memory requirement of task-subroutine T1 is /A and the global memory requirement for the program is
,ag., then the total memory requirement pww for module M is:

PtaM = pg, + max.i,x(I4)
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max is taken since local memory for subroutines is allocated on stack. If a module is executing on a set of P processors,
memory required per processor to hold global variables is:

'"'.( P) = CO + ( cS.I P)

where CO. and C,'. represent the memory requirement due to replicated and distributed variables respectively.
The memory requirement of individual task-subroutines is dependent on arguments that are redistributed on

subroutine entry. If the task subroutine that sends the argument is part of the same module, then additional memory
is allocated for redistribution. If a task-subroutine has k arguments that are potentially redistributed on entry, then the
per processor memory requirement for holding local variables and parameters can be modeled as:

k

Pi()= CI.+ (c;/.P) + FZ((bi * C.,)/P)
1=i

where C.D and Ct/P represent the memory requirements of local replicated and distributed variables respectively, C.,,
is the size of the ith redistributable argument and bi is I if the task-subroutine from which the argument is sent is in the
same module as T. and 0 otherwise.

4 Deriving the execution model parameters

We restate the parameterized equations for task execution time and inter-task communication time, from the previous
section:

,-•(P) =. - + (c•'I'P) + (c'2 * P) (1)

rdp(P) = 4 +(c• •p P) (2)

rp(PhP 2) = COF +(Cp ,P )+(C' *P 2) (3)

We have to determine the actual C, Ca, and Cp parameters for each task-subroutine. Consider equation (I). By
e-cuting a task-subroutine three times on different number of processors, and measuring the execution time, we obtain
three equations in three unknowns, which can be solved in a straightforward way to obtain all C, values. Similarly,
by measuring the data transfer time for two different executions for equation (2). and three different executions for
equation (3), the unknown parameters can be determined by solving systems of linear equations.

We omit the details of the derivation of memory requirement parameters, and simply state that they can be inferred
using compile time information and measurements of stack and heap allocations, made during execution with two
different mappings.

Lemma 1 All the parameters of the execution model described in Section 3 can be obtained by executing a program
at most 5 times.

Proof. The parameters for data parallel and task parallel communication can be obtained (for instance) by executing
the program in pure data parallel mode twice and in pure task parallel mode three times, that is 5 distinct executions.
The parameters for execution time and memory requirement each require two different executions and can be included
in the set of 5 executions stated above.

We wish to point out that the final parameterized equations only approximate the real behavior of the program. In
practice, however, they provide sufficient information for the mapping process.

5 Building modules from tasks

Once the parameters of the execution model for a program are established, it is possible to predict the total execution
time for any program mapping. The objective is to find the optimal mapping for a given program on a given set of
processors. To establish the mapping of a program onto a set of processors, the following decisions have to be made:

1. Partitioning of task-subroutines into modules.
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2. Possible replication of modules.

3. Allocation of processors to module instances.

In this section, we address the problem of partitioning task-subroutines into modules. We initially place every
task-subroutine in a module by itself, and then selectively merge pairs of modules, whenever it is considered profitable.
We restate that all task-subroutines in the same module are mapped to the same set of processors.

One reason why the mapping problem is difficult is that the three subproblems listed above are interdependent,
that is, the optimal solution for each depends on the solutions of others. We present a set of results that address the
problem of partitioning tasks into modules, with some assurance that the final mapping obtained from this partitioning
is close to optimal. In the next section, we address replication of modules and processor allocation.

5.1 Theoretical complexity

It is fairly easy to show that the problem of optimally mapping a set of parallel tasks to a set of processors is in a class
of multiprocessor scheduling problems that are NP-hard. For this purpose, we consider a parallel machine with only
two processors, and assume that there are no memory or dependence constraints. The restricted optimization problem
obtained can be stated as follows:

Given a set of tasks T1, T2, ...Tn, with execution time r(i) for task Ti. Divide the tasks into two groups such that
the maximum of the sum of the two execution times in the two sets is minimized.

This problem can be shown to be NP-hard by transforming the Partition problem [71 to the above problem.

5.2 Pair of tasks

We first consider a pair of task-subroutines that are assigned to different modules, and examine the performance
implications of merging the modules. There are several reasons why it may be profitable to assign a pair of task-
subroutines to different modules:

"* More processors may be used effectively by two different modules than one.

"* Replication and processor assignment decisions for the task-subroutines are decoupled, allowing more flexibility.

* Individual memory requirements for each module may be lower than the memory requirement of a single merged
module, allowing each instance to fit in a smaller number of processors and improving communication locality.

However, the cost of transferring data between task-subroutinescan increase when they belong to different modules,
and are mapped on different parts of the processor array. In particular, when the distribution of an array item is the
same for the two task-subroutines, the data transfer cost is zero when they belong to the same module, but can be
significant when they are in different modules.

It is possible to make the decision on merging the modules in a provably correct way, if the following condition
holds for the corresponding task-subroutines:

1. The task-subroutine scales linearly, including inter-task communication cost, or

2. The task-subroutine can be replicated, and the total number of processors available is much greater than the
minimum number needed to map the subroutine.

This condition allows us to assign fixed execution speed (per processor), with task-subroutines. If a task-subroutine
scales perfectly, then this is trivial. Otherwise, we pick the fastest feasible execution rate, which corresponds to
execution with the smallest number of processors that the task-subroutine can execute on, since that provides the best
communication locality. Under this condition, the following lemma holds:

Lemma 2 Consider a program consisting of two task-subroutines T, and T"2, which can be mapped to individual
modules M, and M2, or a single module Mi2. Let the minimum number of processors required to fit the data sets of
corresponding modules be P1, P2 and P12. The criterion for placing both the tak-subrouines in the same module is:

(e r12 >
(PI r. + P2 r)/(P] 2r~ ,

where r', 2 and r 2 are the execution times (including communication) of the corresponding modules, on P1, P2 and

P12 processors, respectively.
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The result is obtained by comparing the predicted speeds of execution for the two cases, and is our basis for dividing
task-subroutines into modules. The condition is verified in a quantitative sense, and in our experience, usually holds.
An iterative approach is used when the lemma cannot be used directly.

5.3 Task graphs

We now address the problem of partitioning a task graph, which is required to be acyclic. except for self dependences.
The result from last section can be used to make pairwise decisions, but the order in which the pairs are chosen can
influence the final partitioning. Consider the task graph in Figure 4. Task-subroutines TI, T2 and T3 require a minimum

TI Arrow thickness reflects volume of communication

P1 =6
P2 = 12
P3=6

Optimal Partition: ((T1, T3), (T2))
T2 T Other Partitions: ((Ti ,T2),(T3)},{(T1 ,T2,T3))

Figure 4: Partitioning a task graph into modules

of 6, 12 and 6 processors, respectively, to execute. For simplicity, we assume that the minimum number of processors
required to execute a module is the maximum of the processors required for individual subroutines inside the module.
Also, suppose T3 is a communication intensive task-subroutine that does not scale well, while others scale linearly,
and the volume of communication along the edge Ti->T3 is the only major inter-task communication cost, which is
non-existent if those two task-subroutines are mapped to the same module.

The optimal partitioning into modules is {(TI, T3), (T2)), which is obtained if we examine T, and T3 first, and merge
them into a module. However if we examine T, and T2 first, we may merge them, and then the possible partitionings
are {(Ti, T2), (T3)}, which implies that the cost of communication from T1->7T3 has to be paid, or (TI, T2, 7T3) which
implies that T3, that does not scale well, will be forced to use at least 12 processors per instance instead of 6, which is
wasteful.

In general, the problem is that we may combine a set of compute intensive routines in one module first (with limited
benefit), which may leave a communication intensive routine with limited choices. Based on these observations, we
use the following heuristic to pick a pair of modules for a potential merger:

* Higher priority to modules that do not scale well as number of processors is increased.

* Higher priority to pairs of modules that need roughly the same number of processors, since the decision influences
other decisions less.

The pairwise selection method discussed here is effective for task graphs that are trees and our tool set uses it. We
are motivated by the fact that a large class of applications lead to task graphs that are trees, often just straight line
graphs. There is some additional complexity involved in the partitioning of acyclic task graphs that are not trees, and
we expect to address that in future publications.

An obvious alternate approach is to exhaustively try all orders and use the best results obtained. Although this
approach does not seem appealing, it can be used effectively in many situations, since task graphs in a data and task
parallel program often contain only a few nodes.
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6 Mapping modules to processors

Once the task-subroutines have been partitioned into modules, we divide the processors among the modules, and
replicate the modules when legal and profitable. Replication means executing multiple instances of modules on
different parts of the processor array, and is legal when none of the task-parameters in the module has a self dependence,
or carries state between instances. The multiple module instances share work by processing data-sets in a round robin
fashion. Our procedure is as follows:

1. Divide the processors among modules based on the best estimate of their execution rate.

2. Map the modules onto the processor array, replicating whenever it is possible and profitable.

6.1 Allocating processors to modules

The objective of processor allocation is that every module should execute in approximately the same amount of time,
thus minimizing load imbalance. The execution time of a module containing a set of task-subroutines, including the
communication time, on P processors, can be modeled as:

r'U(P) = O,+ (C,/P) + (CI * P) + E *ý-P

where each term in the summation refers to communication with another module. The parameters can be computed
directly from the parameters of the task-subroutines that constitute the module. The summation term involves the
number of processors allocated to other modules that this module communicates with. On per processor basis, the best
performance is achievi when an instance of the module executes on the smallest number of processors. Thus, if each
instance of the modtul. requires at least Po processors to execute, and the modules that it communicates with are also
assumed to execute on the smallest set of processors (Pio), the execution time corresponding to the best per processor
performance is:

¢(No) = + (C /Po) + (C; . Po) + Z C' *

which is a constant. And the execution rate of module M is:

x(M) = I /(r•(Po) * PO)

in datasets/second/processor.
Once fixed per processor execution rates are assigned to modules, the problem of finding an optimal allocation can

be stated as:
Given a set of modules MI, M2, ... .M with execution rate X(Mi)for module Mi, divide the available processors P

into k sets PI , P2 , ...Pb, such that maxi.1,k(Pi * X(Mi)) is minimized
We first solve the problem exactly assuming Pis are allowed rational, i.e. non integral values. We assign an

arbitry value to (say) P0, then solve for PI, P2,...Pk using Pi * X(Mi) = Po * X(Mo) and scaling all Pi values such
that F",. (PJ) = P. Actual numbers of processors ._;signed to each module, of course, must be integers. Once a rational
solution is known, we simply find an approximate integer solution that is close to the rational solution.

As in the last section, the processor assignment procedure is based on finding a fixed, per processor, execution
rates for modules. When this is not possible, an iterative approach is used.

6.2 Replication and processor assignment
As stated before, replication of a module is legal if none of the task-subroutines in it has a self cycle. Even when

replication is legal, it may not be feasible or desirable for the following reasons.

* Enough processors may not be available.

* When the communication paradigm requires reservation of machine resources (e.g. long lived connections in
some parallel machines and networks), sufficient resources may not be available.

o A large number of module instances increase the possibility of slowdown due to sharing of communication
resources.
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We make the actual replication decisions heuristically, taking the above factors into account. We omit the details.
but typically the result is that the communication intensive routines that cannot use a large number of processors in one
instance effectively, are more likely to be replicated, while subroutines that scale well are less likely to be replicated.

Finally, we have to assign the physical processors to module instances. This is done such that the sharing of
communication resources between modules is minimized. In our current implementation, module instances can be
mapped only to rectangular subarrays of processors.

It may be useful to re-execute the program with the predicted mapping, and collect information tot fine tuning. We
expect to be able to comment on the importance of this step with more experience.

7 Application to an example program

We illustrate the process of automatic mapping by demonstrating how our toolset maps an example program onto a
64 processor iWarp array. The program consists of a 512 point 2DFFT, implemented as a sequence of I DFFTs with
a transpose between them, followed by a statistical analysis routine. The three task-sujbroutines corresponding to the
computation stages are col ffts, rowffts and hist (for column FFTs, row FFTs and Histograms). respectively.
Figure 5 shows the structure of the computation, and a task-subroutine call level code for the program.

C$ begin parallel
do i = l,m

call colffts(A)
C$ output: A

call rowffts(A)
C$ input: A
C$ output: A

call hist(A)
C$ input: A

enddo
C$ end parallel

Figure 5: Structure of the example program

The first two task-subroutines are completely parallel, while the third task-subroutine, his t, contains significant
communication. This example was chosen because it demonstrates the tradeoffs between different mapping styles,
and more important, it reflects the structure of a large class of applications in digital signal processing and image
processing.

7.1 Obtaining execution parameters

The program is executed for a set of different mappings, and the instrumentation generates timing information for
the execution of the task-subroutines, and for communication between them. The mappings used for this example
are shown in Figure 6. In accordance with Lemma 1, these 5 mappings are sufficient to derive the parameters of the
program model presented in section 3. The measured execution and communication times are tabulated in Figure 7.

Analysis of these measurements using the methods discussed in section 4, yields the execution parameters of the
program. The execution times of the task-subroutines in terms of the number of processors are as follows:

ir,"(P) = -0.97 + (0.011 * P) + (600.4/P)

rX(P) = -6.42 + (0.072 P) + (639.0/P)
ý(P) = 15.27 + (0.231 * P) + (252.2/P)

The estimated execution time function is plotted in Figure 8 and shows that the FF' stages scale very well, while
the histogram stage does not. This reflects the computations in the task-subroutines - the first two are data parallel,
while the third is communication intensive.
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0-4 -4-W
T1 T2 T3

P1=12, P2=16, P3=32 P1=16, P2=32, P3=12 P1-32, P2=12, P3=16

P1 ,P2,P3--64 P1,P2,P3=32

Figure 6: Mappings for analyzing the example program

Processors Communication Time (10 2 secs.)
Processors Execution Time (lO-secs.) (send-task -> Data Parallel Task Parallel

Ti Ti T3 recv-task) TI->T2 12->T3) TI->T2 T2->T3
12_____ TI 39. 32->32 4.18 0.08 * *

1 24 .8 t 4 7 63 9 0
32 49.12 15.82 30.54 64->64 2.50 0.06 * *

3.12 E 12->16 * * 9.57 9.61
64 9.11 8.16 34.00 16->32 * * 9.65 9.63

32->12 * * 9.80 9.95

Figure 7: Timings from evaluation runs of the example program

The communication parameters, also derived from the measurements in Figure 7, are as follows:

.r> 2 (P) = 5.86- (0.052*P)

-_>'(p) = 0.10- (0.001* P)

n/->2(pI, p2) = 9.39+(0.012*PI)+(0.002,P 2 )

7ý2 >3(p2, P3) = 9.46+(0.016*P 2 )-(0.003*P 3)

We note that there is some cost of data parallel communication between task-subroutines T, and T2, but practically
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Figure 8: Scaling of example program subroutines

none between T2 and T3. This is because the former involves a matrix transpose, while the latter requires no data
movement. The task parallel communication time is practically constant. In our implementation, the communication
between tasks is done systolically on a single link with a fixed bandwidth, and hence the communication time primarily
depends on the volume of data being transferred, which is the same in all cases.

We omit the details of the memory requirement analysis and state the final results. A processor in our target
machine (iWarp) has a fixed amount of main memory. The minimum number of processors required to fit the data set
of each of the three task-subroutines is 10, which is the same since the main data structure is the same array. However,
when task-subroutine Ti is mapped to the same module as T2 or T3, a minimum of 20 processors are required, since
memory for the original and the transposed array must be allocated.

7.2 Modules from tasks

We initially put each task-subroutine in a module by itself, and compare pairs of modules that have a communication
edge between them, to determine if the modules should be merged. In the example program, we have modules Mi,
M 2 and M3 containing the three task-subroutines. Using the priority system discussed in 5.3, we first examine the pair
(M 2, M 3), since M 3 contains the least scalable task-subroutine. Using Lemma 2, we compute:

(P21 Xj'2 + P3r)/(P23,rr ) = t.189 > I

where P2 , P 3 = 10, P,3 = 10 and execution times are computed from the equations for the corresponding modules.
Since the above expression > 1, we conclude that the modules should be combined, yielding a new module M23.
The execution parameters of M 23 are obtained by adding the execution parameters of P 2 and P 3 and the data parallel
communication parameters for communication between them. We obtain:

MA(P) = 8.95 + (0.302 * P) + (891.2/P)

As before, we test if the modules M, and M23 should be merged and obtain:

(P, I .' + P23i,•' 3 )/(P,23i'"
3) = .945 < I
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and therefore the modules are not combined. Thus the final assignment of task-parameters to modules is:

M, = {(T,)}

M'23 = {(T2 , T3)}

7.3 Allocation of processors

The processors are allocated on the basis of the relative execution speed for the minimum number of processors that
the modules run on, including the communication time. In this case, we have:

( +.++ ,MI)/(rA13 +rM23) = 1:1.57

And for a 64 processor machine, we get

PI = 24.9 • 25

P23 = 39.1 ; 39

7.4 Replication

The replication decisions are based on the scalability of different modules - the less scalable are prioritized. We
measure the execution time for running each module on all the processors allocated to it, and with only half of the
processors allocated, and pick the module which shows the least speedup, For our example, we get:

f' 5'( 2) = 2.02

•Nl3(19.5)/r.N3(39) = 1.39

Hence module M23 is selected for replication. It has 39 processors allocated, and each instance needs at least 10. so
we overallocate, and have four instances, each executing on 10 processors, consuming 40 processors. The remaining
24 processors are allocated to module Mi. Since module MI shows nearly linear speedup, it is not replicated.

Figure 9 summarizes the steps in mapping the example program, and shows the final mapping. Figure 10 compares
the performance of this mapping to other mappings.

8 Discussion

We are using the results of this research for developing several applications with the Fx compiler. We obtained four
fold improvement over a fully data parallel Narrowband tracking radar benchmark [11], mainly because the data
parallel version could use only a small number of cells effectively. Other applications under development include SAR
(Synthetic Aperture Radar), Multibaseline Stereo, and MRI (Magnetic Resonance Imaging). While the discussion
of these applications is beyond the scope of this paper, they all have multiple stages with different computation
requirements, similar to the model program discussed in section 7.

The main limitation of our approach is that it can be used only for programs where the history of execution is a good
indicator of the future computation and communication requirements. In the current implementation, the mapping is
fixed during execution, and cannot change with runtime behavior. While our approach is not applicable to programs
whose runtime behavior is completely unpredicatable, it can be adapted for programs where the runtime behavior can
change, but recent history is still a good predictor of near future. We are planning to develop an implementation that
supports dynamic remapping based on changes in runtime behavior. While this will add considerable complexity to
the system, the fundamental approach remains the same.

We have selected a fairly simple execution model and many refinements are possible. We model the execution
time as a quadratic functions, and the communication times as linear functions. We also ignore several secondary
effects, for instance, the effect on performance due to sharing of the global machine resources. Our guiding principle
has been to develop a simple model and implementation that can be used effectively and conveniently for developing
applications. We expect experience to guide us into refinement of the automatic mapping tool.

Plans for future research include development of an interactive tool to guide program mapping, and to port the
implementation to other parallel computers and high speed networks. We are also in the process of identifying more
applications which can profit from an integrated task and data parallel compiler.
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Figure 9: Mapping steps and the final mapping of the example program

Program Mapping Performance
(data- sets/sec.)

Data Parallel 1.44
Best Task Parallel 2.06

Best Predicted 2.82
(as shown)

Figure 10: Relative performance of the final mapping

9 Related Work

Compilation and optimization of programs for private memory parallel computers has been a very active area of
research for several years. Several parallelizing compilers have been developed for data parallel programs, including
Fortran D [13] and Vienna Fortran [31, and for task parallel programs [8, 9]. Recent research shows that a large
class of applications contain task and data parallelism [6] and it is important to exploit them in a single compiler
framework [4, 5, 12]. There is also a large body of literature on, partitioning, load balancing and scheduling of parallel
programs [1, 101.

We have addressed the specific partitioning and load balancing issues that arise when task and data parallelism are
combined in a parallelizing compiler, including memory requirement issues that are important but often ignored, and
developed a practical system to efficiently compile and map task and data parallel programs. An alternate approach,
taken in Jade [81 is to express all parallelism as coarse grain tasks, and make scheduling decisions at runtime. This is
particularly useful when runtime behavior is unpredictable, but may entail a higher overhead. Most applications have
components that have simple data parallelism, and we believe that it is extremely important to use an optimizing data
parallel compiler for integrated task and data parallel systems, and statically schedule and optimize computations and
communication whenever feasible.
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10 Conclusions

We have examined the fundamental characteristics of task and data parallel programs that determine their performance.
and presented an execution model for such applications. We used this model and analysis techniques to build a tool to
automatically map parallel programs onto a parallel machine. We are using this tool to develop a class of applications
that need to exploit task and data parallelism for efficient execution.
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